必发88-bifa88必发娱乐官方网站
做最好的网站

人脸检测是人脸识别预处理必发365乐趣网投反水

2019-11-29 21:18 来源:未知

人脸识别,基于人脸部特征消息识别身份的古生物识别才干。录制机、录像头搜罗人脸图像或录像流,自动检查实验、追踪图像中脸部,做脸部相关本事管理,人脸检查测量检验、人脸关键点检测、人脸验证等。《印度孟买理工科技(science and technology卡塔尔(قطر‎评价》(MIT Technology Review卡塔尔(قطر‎,前年国内外十大突破性技能榜单,支付宝“刷脸支付”(Paying with Your Face卡塔尔入围。

人脸识别优势,非强制性(收集格局不便于被开掘,被识外人脸图像可积极赢得卡塔尔国、非接触性(客商没有需求与设施接触卡塔尔国、并发性(可同一时候三人脸检查评定、追踪、识别卡塔尔。深度学习前,人脸识别双手续:高维人工特征提取、降维。传统人脸识别技能基于可以知道光图像。深度学习 大数目(海量有标明人脸数据卡塔尔国为人脸识别领域主流技术门路。神经互连网人脸识别本事,多量样书图像练习识别模型,无需人工采用特征,样板练习进度自行学习,识别正确率能够直达99%。

人脸识别本领流程。

人脸图像采撷、检查测验。人脸图像搜罗,摄像头把人脸图像收集下来,静态图像、动态图像、不一样任务、区别表情。顾客在搜聚设备拍报范围内,采撷设置自动物检疫索并拍照。人脸质量评定归属指标检查测量试验(object detection卡塔尔国。对要检验对象对象可能率总结,得到待检查评定对象特征,组建指标检查实验模型。用模子相称输入图像,输出相配区域。人脸检验是人脸识别预管理,正确标定人脸在图像的岗位大小。人脸图像方式特点丰裕,直方图特征、颜色特征、模板特征、构造特征、哈尔特征(Haar-like feature卡塔尔。人脸检查评定挑出有用音讯,用特色检查评定脸部。人脸检查评定算法,模板相配模型、Adaboost模型,Adaboost模型速度。精度综合品质最佳,练习慢、检查评定快,可直达录制流实时检查评定效果。

人脸图像预处理。基于人脸检测结果,管理图像,服务特征提取。系统得到人脸图像遭到各类规格约束、随机干扰,需缩放、旋转、拉伸、光线补偿、灰度转变、直方图均衡化、标准化、几何修正、过滤、锐化等图像预管理。

人脸图像特征提取。人脸图像消息数字化,人脸图像转变为后生可畏串数字(特征向量卡塔尔(قطر‎。如,眼睛侧面、嘴唇左侧、鼻子、下巴地方,特征点间欧氏间距、曲率、角度提收取特色分量,相关特征连接成长特征向量。

人脸图像相称、识别。提取人脸图像特点数据与数据仓库储存款和储蓄人脸特征模板寻找匹配,依照相仿程度对身份消息举行判定,设定阈值,相仿度超越阈值,输出相配结果。确认,生机勃勃对一(1:1卡塔尔图像比较,注脚“你就是你”,金融核查身份、音讯安全球。辨认,生机勃勃对多(1:N卡塔尔(قطر‎图像相称,“N人中找你”,录像流,人走进识别范围就完了辨认,安全防护领域。

人脸识别分类。

人脸检查实验。检查测量试验、定位图片人脸,重返高业饿啊人脸框坐标。对人脸深入分析、管理的率先步。“滑动窗口”,接纳图像矩形区域作滑动窗口,窗口中领取特征对图像区域描述,依照特征描述判别窗口是还是不是人脸。不断遍历需求观看窗口。

人脸关键点检查测量检验。定位、重返人脸五官、概略关键点坐标地点。人脸概况、眼睛、眉毛、嘴唇、鼻子轮廓。Face 提供高达106点关键点。人脸关键点定位手艺,级联形回归(cascaded shape regression, CSCRUISER卡塔尔。人脸识别,基于DeepID互联网布局。DeepID互联网构造相同卷积神经互连网构造,倒数第二层,有DeepID层,与卷积层4、最大池化层3相连,卷积神经网络层数越高视界域越大,既思忖部分特征,又思考全局特征。输入层 31x39x1、卷积层1 28x36x20(卷积核4x4x1卡塔尔国、最大池化层1 12x18x20(过滤器2x2卡塔尔国、卷积层2 12x16x20(卷积核3x3x20卡塔尔(قطر‎、最大池化层2 6x8x40(过滤器2x2卡塔尔国、卷积层3 4x6x60(卷积核3x3x40卡塔尔国、最大池化层2 2x3x60(过滤器2x2卡塔尔(英语:State of Qatar)、卷积层4 2x2x80(卷积核2x2x60卡塔尔(قطر‎、DeepID层 1x160、全连接层 Softmax。《Deep Learning Face Representation from Predicting 10000 Classes》 。

人脸验证。深入分析两张人脸同一位恐怕大小。输入两张人脸,获得置信度分类、相应阈值,评估相近度。

人脸属性检验。人脸属性辩识、人脸心情解析。 在窥探脸识别测验。给出人年龄、是不是有胡子、激情(欢愉、不奇怪、生气、愤怒卡塔尔(قطر‎、性别、是或不是带近视镜、肤色。

人脸识别应用,美图秀秀美颜应用、世纪佳缘查看地下配偶“面相”相同度,支付领域“刷脸支付”,安全防御领域“人脸鉴权”。Face 、商汤科学和技术,提供人脸识别SDK。

人脸检查测验。 。

Florian Schroff、Dmitry Kalenichenko、James Philbin论文《FaceNet: A Unified Embedding for Face Recognition and Clustering》 。 。

LFW(Labeled Faces in the Wild Home)数据集。 。美利坚合营国南卡罗来纳高校阿姆斯特分校Computer视觉实验室收拾。13233张图片,57四十五位。4095位唯有一张图片,1683位多于一张。每张图片尺寸250x250。人脸图片在各种人物名字文件夹下。

数码预管理。校准代码 。
检查实验所用数据集校准为和预训练模型所用数据集大小一样。
设置意况变量

export PYTHONPATH=[...]/facenet/src

校准命令

for N in {1..4}; do python src/align/align_dataset_mtcnn.py ~/datasets/lfw/raw ~/datasets/lfw/lfw_mtcnnpy_160 --image_size 160 --margin 32 --random_order --gpu_memory_fraction 0.25 & done

预演练模型20170216-091149.zip 。
训练集 MS-Celeb-1M数据集 。微软人脸识别数据库,名家榜选拔前100万名人,寻觅引擎采撷各种名家100张人脸图片。预练习模型准确率0.993 -0.004。

检测。python src/validate_on_lfw.py datasets/lfw/lfw_mtcnnpy_160 models
条件相比,选择facenet/data/pairs.txt,官方随机生成多少,相称和不相称人名和图表编号。

十折交叉验证(10-fold cross validation卡塔尔,精度测量检验方法。数据集分成10份,轮番将此中9份做练习集,1份做测量试验保,十一回结果均值作算法精度测度。日常须求频频10折交叉验证求均值。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate

def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:

# Read the file containing the pairs used for testing
# 1. 读入以前的pairs.txt文件
# 读入后如[['Abel_Pacheco','1','4']]
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
# 获取文件路线和是不是合作关系对
paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
# Load the model
# 2. 加载模型
facenet.load_model(args.model)

# Get input and output tensors
# 获取输入输出张量
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

#image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
image_size = args.image_size
embedding_size = embeddings.get_shape()[1]

# Run forward pass to calculate embeddings
# 3. 使用前向传来验证
print('Runnning forward pass on LFW images')
batch_size = args.lfw_batch_size
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) # 总共批次数
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i 1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images, phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)

# 4. 构思精确率、验证率,十折交叉验证办法
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array,
actual_issame, nrof_folds=args.lfw_nrof_folds)
print('Accuracy: %1.3f -%1.3f' % (np.mean(accuracy), np.std(accuracy)))
print('Validation rate: %2.5f -%2.5f @ FAR=%2.5f' % (val, val_std, far))
# 得到auc值
auc = metrics.auc(fpr, tpr)
print('Area Under Curve (AUC): %1.3f' % auc)
# 1拿到错误率(eer卡塔尔(英语:State of Qatar)
eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
print('Equal Error Rate (EER): %1.3f' % eer)

def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument('lfw_dir', type=str,
help='Path to the data directory containing aligned LFW face patches.')
parser.add_argument('--lfw_batch_size', type=int,
help='Number of images to process in a batch in the LFW test set.', default=100)
parser.add_argument('model', type=str,
help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=160)
parser.add_argument('--lfw_pairs', type=str,
help='The file containing the pairs to use for validation.', default='data/pairs.txt')
parser.add_argument('--lfw_file_ext', type=str,
help='The file extension for the LFW dataset.', default='png', choices=['jpg', 'png'])
parser.add_argument('--lfw_nrof_folds', type=int,
help='Number of folds to use for cross validation. Mainly used for testing.', default=10)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))

性别、年龄识别。 。

Adience 数据集。 。26580张图片,2284类,年龄范围8个区段(0~2、4~6、8~13、15~20、25~32、38~43、48~53、60~卡塔尔(英语:State of Qatar),含有噪声、姿势、光照变化。aligned # 经过剪裁对齐多少,faces # 原始数据。fold_0_data.txt至fold_4_data.txt 全部数额符号。fold_frontal_0_data.txt至fold_frontal_4_data.txt 仅用相符正面态度面部标识。数据构造 user_id 用户Flickr帐户ID、original_image 图片文件名、face_id 人标记符、age、gender、x、y、dx、dy 人脸边框、tilt_ang 切斜角度、fiducial_yaw_angle 基准偏移角度、fiducial_score 基准分数。

多少预管理。脚本把多少管理成TFRecords格式。 。 图片列表 Adience 数据集管理TFRecords文件。图片管理为大小256x256 JPEG编码途达GB图像。tf.python_io.TFRecordWriter写入TFRecords文件,输出文件output_file。

创设立模型型。年龄、性别练习模型,Gil Levi、Tal Hassner杂谈《Age and Gender Classification Using Convolutional Neural Networks》 。模型 。tenforflow.contrib.slim。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base
TOWER_NAME = 'tower'
def select_model(name):
if name.startswith('inception'):
print('selected (fine-tuning) inception model')
return inception_v3
elif name == 'bn':
print('selected batch norm model')
return levi_hassner_bn
print('selected default model')
return levi_hassner
def get_checkpoint(checkpoint_path, requested_step=None, basename='checkpoint'):
if requested_step is not None:
model_checkpoint_path = '%s/%s-%s' % (checkpoint_path, basename, requested_step)
if os.path.exists(model_checkpoint_path) is None:
print('No checkpoint file found at [%s]' % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
return ckpt.model_checkpoint_path, global_step
else:
print('No checkpoint file found at [%s]' % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name '/activations', x)
tf.summary.scalar(tensor_name '/sparsity', tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
"is_training": is_training,
"trainable": True,
# Decay for the moving averages.
"decay": 0.9997,
# Epsilon to prevent 0s in variance.
"epsilon": 0.001,
# Collection containing the moving mean and moving variance.
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
weight_decay = 0.00004
stddev=0.1
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("InceptionV3", "InceptionV3", [images]) as scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope("logits"):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding="VALID", scope="pool")
net = tf.nn.dropout(net, pkeep, name='droplast')
net = flatten(net, scope="flatten")

with tf.variable_scope('output') as scope:

weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
"is_training": is_training,
"trainable": True,
# Decay for the moving averages.
"decay": 0.9997,
# Epsilon to prevent 0s in variance.
"epsilon": 0.001,
# Collection containing the moving mean and moving variance.
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("LeviHassnerBN", "LeviHassnerBN", [images]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding='VALID', biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding='SAME', scope='conv2')
pool2 = max_pool2d(conv2, 3, 2, padding='VALID', scope='pool2')
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding='SAME', biases_initializer=tf.constant_initializer(0.), scope='conv3')
pool3 = max_pool2d(conv3, 3, 2, padding='VALID', scope='pool3')
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('output') as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("LeviHassner", "LeviHassner", [images]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding='VALID', biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001, beta=0.75, name='norm1')
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding='SAME', scope='conv2')
pool2 = max_pool2d(conv2, 3, 2, padding='VALID', scope='pool2')
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001, beta=0.75, name='norm2')
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1], biases_initializer=tf.constant_initializer(0.), padding='SAME', scope='conv3')
pool3 = max_pool2d(conv3, 3, 2, padding='VALID', scope='pool3')
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('output') as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output

操练模型。 。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
from model import select_model
import json
import re
LAMBDA = 0.01
MOM = 0.9
tf.app.flags.DEFINE_string('pre_checkpoint_path', '',
"""If specified, restore this pretrained model """
"""before beginning any training.""")
tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0',
'Training directory')
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
'Number of preprocessing threads')
tf.app.flags.DEFINE_string('optim', 'Momentum',
'Optimizer')
tf.app.flags.DEFINE_integer('image_size', 227,
'Image size')
tf.app.flags.DEFINE_float('eta', 0.01,
'Learning rate')
tf.app.flags.DEFINE_float('pdrop', 0.,
'Dropout probability')
tf.app.flags.DEFINE_integer('max_steps', 40000,
'Number of iterations')
tf.app.flags.DEFINE_integer('steps_per_decay', 10000,
'Number of steps before learning rate decay')
tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,
'Learning rate decay')
tf.app.flags.DEFINE_integer('epochs', -1,
'Number of epochs')
tf.app.flags.DEFINE_integer('batch_size', 128,
'Batch size')
tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
'Checkpoint name')
tf.app.flags.DEFINE_string('model_type', 'default',
'Type of convnet')
tf.app.flags.DEFINE_string('pre_model',
'',#'./inception_v3.ckpt',
'checkpoint file')
FLAGS = tf.app.flags.FLAGS
# Every 5k steps cut learning rate in half
def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
print('decay [%f] every [%d] steps' % (decay_rate, at_step))
def _decay(lr, global_step):
return tf.train.exponential_decay(lr, global_step,
at_step, decay_rate, staircase=True)
return _decay
def optimizer(optim, eta, loss_fn, at_step, decay_rate):
global_step = tf.Variable(0, trainable=False)
optz = optim
if optim == 'Adadelta':
optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
lr_decay_fn = None
elif optim == 'Momentum':
optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
losses = tf.get_collection('losses')
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = cross_entropy_mean LAMBDA * sum(regularization_losses)
tf.summary.scalar('tl (raw)', total_loss)
#total_loss = tf.add_n(losses regularization_losses, name='total_loss')
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
loss_averages_op = loss_averages.apply(losses [total_loss])
for l in losses [total_loss]:
tf.summary.scalar(l.op.name ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss
def main(argv=None):
with tf.Graph().as_default():
model_fn = select_model(FLAGS.model_type)
# Open the metadata file and figure out nlabels, and size of epoch
# 展开元数据文件md.json,这些文件是在预处理数量时生成。寻觅nlabels、epoch大小
input_file = os.path.join(FLAGS.train_dir, 'md.json')
print(input_file)
with open(input_file, 'r') as f:
md = json.load(f)
images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)
total_loss = loss(logits, labels)
train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
tf.global_variables_initializer().run(session=sess)
# This is total hackland, it only works to fine-tune iv3
# 本例可以输入预训练模型英斯ption V3,可用来微调 英斯ption V3
if FLAGS.pre_model:
inception_variables = tf.get_collection(
tf.GraphKeys.VARIABLES, scope="InceptionV3")
restorer = tf.train.Saver(inception_variables)
restorer.restore(sess, FLAGS.pre_model)
if FLAGS.pre_checkpoint_path:
if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)
restorer = tf.train.Saver()
tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
print('%s: Pre-trained model restored from %s' %
(datetime.now(), FLAGS.pre_checkpoint_path))
# 将ckpt文件存储在run-(pid卡塔尔国目录
run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())
checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)
if tf.gfile.Exists(run_dir) is False:
print('Creating %s' % run_dir)
tf.gfile.MakeDirs(run_dir)
tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)
num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epoch
print('Requested number of steps [%d]' % num_steps)

for step in xrange(num_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, total_loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
# 每10步记录三遍摘要文件,保存一个检查点文件
if step % 10 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)

format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Loss only actually evaluated every 100 steps?
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)

if step % 1000 == 0 or (step 1) == num_steps:
saver.save(sess, checkpoint_path, global_step=step)
if __name__ == '__main__':
tf.app.run()

证实模型。 。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import *
import os
import json
import csv
RESIZE_FINAL = 227
GENDER_LIST =['M','F']
AGE_LIST = ['(0, 2)','(4, 6)','(8, 12)','(15, 20)','(25, 32)','(38, 43)','(48, 53)','(60, 100)']
MAX_BATCH_SZ = 128
tf.app.flags.DEFINE_string('model_dir', '',
'Model directory (where training data lives)')
tf.app.flags.DEFINE_string('class_type', 'age',
'Classification type (age|gender)')
tf.app.flags.DEFINE_string('device_id', '/cpu:0',
'What processing unit to execute inference on')
tf.app.flags.DEFINE_string('filename', '',
'File (Image) or File list (Text/No header TSV) to process')
tf.app.flags.DEFINE_string('target', '',
'CSV file containing the filename processed along with best guess and score')
tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
'Checkpoint basename')
tf.app.flags.DEFINE_string('model_type', 'default',
'Type of convnet')
tf.app.flags.DEFINE_string('requested_step', '', 'Within the model directory, a requested step to restore e.g., 9000')
tf.app.flags.DEFINE_boolean('single_look', False, 'single look at the image or multiple crops')
tf.app.flags.DEFINE_string('face_detection_model', '', 'Do frontal face detection with model specified')
tf.app.flags.DEFINE_string('face_detection_type', 'cascade', 'Face detection model type (yolo_tiny|cascade)')
FLAGS = tf.app.flags.FLAGS
def one_of(fname, types):
return any([fname.endswith('.' ty) for ty in types])
def resolve_file(fname):
if os.path.exists(fname): return fname
for suffix in ('.jpg', '.png', '.JPG', '.PNG', '.jpeg'):
cand = fname suffix
if os.path.exists(cand):
return cand
return None
def classify_many_single_crop(sess, label_list, softmax_output, coder, images, image_files, writer):
try:
num_batches = math.ceil(len(image_files) / MAX_BATCH_SZ)
pg = ProgressBar(num_batches)
人脸检测是人脸识别预处理必发365乐趣网投反水。for j in range(num_batches):
start_offset = j * MAX_BATCH_SZ
end_offset = min((j 1) * MAX_BATCH_SZ, len(image_files))

batch_image_files = image_files[start_offset:end_offset]
print(start_offset, end_offset, len(batch_image_files))
image_batch = make_multi_image_batch(batch_image_files, coder)
batch_results = sess.run(softmax_output, feed_dict={images:image_batch.eval()})
batch_sz = batch_results.shape[0]
for i in range(batch_sz):
output_i = batch_results[i]
best_i = np.argmax(output_i)
best_choice = (label_list[best_i], output_i[best_i])
print('Guess @ 1 %s, prob = %.2f' % best_choice)
if writer is not None:
f = batch_image_files[i]
writer.writerow((f, best_choice[0], '%.2f' % best_choice[1]))
pg.update()
pg.done()
except Exception as e:
print(e)
print('Failed to run all images')
def classify_one_multi_crop(sess, label_list, softmax_output, coder, images, image_file, writer):
try:
print('Running file %s' % image_file)
image_batch = make_multi_crop_batch(image_file, coder)
batch_results = sess.run(softmax_output, feed_dict={images:image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]

for i in range(1, batch_sz):
output = output batch_results[i]

output /= batch_sz
best = np.argmax(output) # 最大概质量分类
best_choice = (label_list[best], output[best])
print('Guess @ 1 %s, prob = %.2f' % best_choice)

nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print('Guess @ 2 %s, prob = %.2f' % (label_list[second_best], output[second_best]))
if writer is not None:
writer.writerow((image_file, best_choice[0], '%.2f' % best_choice[1]))
except Exception as e:
print(e)
print('Failed to run image %s ' % image_file)
def list_images(srcfile):
with open(srcfile, 'r') as csvfile:
delim = ',' if srcfile.endswith('.csv') else 't'
reader = csv.reader(csvfile, delimiter=delim)
if srcfile.endswith('.csv') or srcfile.endswith('.tsv'):
print('skipping header')
_ = next(reader)

return [row[0] for row in reader]
def main(argv=None): # pylint: disable=unused-argument
files = []

if FLAGS.face_detection_model:
print('Using face detector (%s) %s' % (FLAGS.face_detection_type, FLAGS.face_detection_model))
face_detect = face_detection_model(FLAGS.face_detection_type, FLAGS.face_detection_model)
face_files, rectangles = face_detect.run(FLAGS.filename)
print(face_files)
files = face_files
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
label_list = AGE_LIST if FLAGS.class_type == 'age' else GENDER_LIST
nlabels = len(label_list)
print('Executing on %s' % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):

images = tf.placeholder(tf.float32, [None, RESIZE_FINAL, RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()

requested_step = FLAGS.requested_step if FLAGS.requested_step else None

checkpoint_path = '%s' % (FLAGS.model_dir)
model_checkpoint_path, global_step = get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)

saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)

softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
# Support a batch mode if no face detection model
if len(files) == 0:
if (os.path.isdir(FLAGS.filename)):
for relpath in os.listdir(FLAGS.filename):
abspath = os.path.join(FLAGS.filename, relpath)

if os.path.isfile(abspath) and any([abspath.endswith('.' ty) for ty in ('jpg', 'png', 'JPG', 'PNG', 'jpeg')]):
print(abspath)
files.append(abspath)
else:
files.append(FLAGS.filename)
# If it happens to be a list file, read the list and clobber the files
if any([FLAGS.filename.endswith('.' ty) for ty in ('csv', 'tsv', 'txt')]):
files = list_images(FLAGS.filename)

writer = None
output = None
if FLAGS.target:
print('Creating output file %s' % FLAGS.target)
output = open(FLAGS.target, 'w')
writer = csv.writer(output)
writer.writerow(('file', 'label', 'score'))
image_files = list(filter(lambda x: x is not None, [resolve_file(f) for f in files]))
print(image_files)
if FLAGS.single_look:
classify_many_single_crop(sess, label_list, softmax_output, coder, images, image_files, writer)
else:
for image_file in image_files:
classify_one_multi_crop(sess, label_list, softmax_output, coder, images, image_file, writer)
if output is not None:
output.close()

if __name__ == '__main__':
tf.app.run()

微软脸部图片识别性别、年龄网址 。图片识别年龄、性别。依据难点查找图片。

参谋资料:
《TensorFlow技艺拆解剖析与实战》

招待推荐东京机械学习职业时机,作者的Wechat:qingxingfengzi

TAG标签:
版权声明:本文由必发88发布于科技资讯,转载请注明出处:人脸检测是人脸识别预处理必发365乐趣网投反水